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SUMMARY

A �nite element-based numerical strategy for interface tracking is developed for the simulation of two-
phase �ows. The method is based on the solution of an advection equation for the so-called ‘pseudo-
concentration’ of one of the phases. To obtain an accurate description of the interface, a streamline
upwind Petrov–Galerkin (SUPG) scheme is combined with an automatic mesh re�nement procedure
and a �ltering technique, making it possible to generate an oscillation-free pseudo-concentration �eld.
The performance of the proposed approach is successfully tested on four classical two-dimensional
benchmark problems: the advection skew to the mesh, the transport of a square shape in a constant
velocity �ow �eld, the transport of a cut-out cylinder in a rotating �ow �eld and the transport of a disc
in a shear �ow. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Interface �ows are encountered in chemical engineering applications that involve multiphase
�ows. For example, they occur in paper coating �ows in the nip of a high speed roll coater in
the presence of air bubbles [1], and in liquid–liquid dispersions and emulsions in rotor-stator
devices [2]. The simulation of these �ow problems remains extremely challenging, although
signi�cant progress has recently been made for the tracking of inter-phase boundaries. From a
numerical perspective, the main challenge is the accurate determination of the location of the
interface, which is a priori unknown. Many methods have been proposed for the solution of
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1306 C. DEVALS ET AL.

two-phase �ow problems, which can be broadly classi�ed into three categories; Lagrangian,
Eulerian and the arbitrary Lagrangian–Eulerian (ALE) methods.
The three most popular examples of the Eulerian approach are the volume of �uid (VOF)

method [3], the level set method [4] and the pseudo-concentration method [5]. Many example
applications of these methods can be found in the literature, as recently reviewed in Refer-
ence [6]. In the VOF method, a colour function F indicates the fractional volume of the �uid
in a cell. F =1 indicates that the cell is full of �uid ‘1’, F =0 corresponds to a cell full
of �uid ‘2’, and 0¡F¡1 is the interface between �uid ‘1’ and ‘2’. The colour function is
advected in some manner [7]. It can be moved algebraically with the �ux-corrected transport
scheme (FCT), or geometrically using the simple line interface calculation procedure (SLIC),
the SOLA-VOF method, or the piecewise linear interface calculation procedure (PLIC). The
main advantage of the VOF method is that mass conservation is ensured, although the inter-
face reconstruction is time-consuming and its extension to 3D is complex, especially in the
context of unstructured grids.
In the level set approach, the interface is de�ned by a zero level set of a smooth function

F representing the distance from the interface: F =0 at the interface, F¿0 outside the initial
surface and F¡0 inside. The function F is transported using the advection equation

@F
@t
+ u:gradF =0 (1)

where u is the �uid velocity obtained from the solution of the momentum and continuity
equations. This function is used to evaluate the physical properties ’ of the �uid, such as the
viscosity or the density, based on a weighted average:

’=’1F + (1− F)’2 (2)

where ’1 and ’2 denote the properties of the two phases 1 and 2, respectively. A drawback
of the level set method is that it does not ensure rigorously mass conservation.
The pseudo-concentration is based on the value of F (F =0:5 corresponds to the position

of the interface) to determine the distribution in the domain of the two �uids ‘1’ and ‘2’. The
value of F ranges between 0 and 1, and F is also transported by Equation (1). This method
was developed because of its relative ease of implementation in 2D and in 3D, even if it is
necessary to remesh the computational domain to obtain the necessary solution accuracy [5].
The objective of this paper is to present a �nite element strategy for the solution of in-

terface tracking problems based on the pseudo-concentration method. With the �nite element
method (FEM), it is well-known that the use of the Galerkin formulation for the solution
of Equation (1) may give non-physical oscillations. These spurious phenomena can be con-
trolled, but rarely fully eliminated, by adding some numerical di�usion to the original problem
using, for example, the streamline upwind Petrov–Galerkin (SUPG) method [8], the Galerkin-
least-square (GLS) method [9] or the discontinuous Galerkin method [10, 11]. A review of
these methods can be found in Reference [12]. Numerical di�usion tends to smooth out steep
gradients, and mesh re�nement techniques are needed to minimize this e�ect. Several au-
thors have proposed the use of adaptive dynamic grids based on hierarchical methods, such
as quadtrees for rectangular grids [13–15] and tri-trees for triangular grids [16] in the two-
dimensional case. Unfortunately, although the combination of Petrov–Galerkin methods and
mesh re�nement yield better results, small oscillations remain in the solution in the sharp
gradient region.
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FINITE ELEMENT STRATEGY FOR SOLUTION OF INTERFACE TRACKING PROBLEMS 1307

In the present work, a new �ltering technique is developed to help remove these oscillations.
This �ltering technique is based on a change of variable that forces the bounds of the colour
function to be exactly 0 and 1. The solution of the colour function advection is obtained with
the SUPG method due to its proven e�ciency in a wide variety of situations and its ease of
implementation. An automatic mesh re�nement procedure developed earlier for the simulation
of �uid �ow in twin-screw extruders [17], and for interface tracking [18] is also used to capture
the shock-like behaviour, so as to reduce di�usion and keep the interface sharp and smooth
as in References [5, 19, 20]. In the forthcoming, the automatic mesh re�nement technique
will be �rst presented and tested in the case of standard academic benchmark problems [21].
It will be shown that the oscillations at the sharp front cannot be fully eliminated. The
�ltering technique will then be fully explained and employed to show how it can alleviate the
oscillation problem. Next, the overall strategy (mesh re�nement and �ltering) will be applied
in the case of the �nite element solution of standard two-dimensional benchmark problems.
Finally, the extension of the proposal strategy to two-phase �ows in chemical engineering
processes will be discussed.

2. MESH REFINEMENT TECHNIQUE

2.1. Methodology

The mesh re�nement technique relies on one reference (generally coarse) mesh that is re-
peatedly re�ned locally throughout a simulation, when needed, using the values of the colour
function F as a remeshing indicator. The procedure comprises two re�nement steps:

(1) a tessellation of the targeted �nite elements into four elements in such a way that the
regularity of the child elements is preserved, see Figure 1(a).

(2) a further re�nement step in some neighbouring elements owing to the presence of
hanging nodes (the dot in Figure 1(a), for instance) to satisfy continuity.

In the latter step, the neighbouring element identi�ed is split into either two, three or four
child elements as illustrated in Figure 1(b), (c) and (d), respectively. This procedure, also
referred to as the red–green re�nement procedure, is discussed by Verfurth [22], Secretan [23]
and Johnson [24]. A similar approach was also used in sheet metal forming processes [25],

Figure 1. Decomposition into (a) four elements; subsequent decomposition of the neighbouring element
into two (b), three (c) and four (d) child elements, to satisfy continuity.
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1308 C. DEVALS ET AL.

where large plastic deformations generate large element distortions and require remeshing to
capture the geometrical details of the resulting surface.
The simulation strategy is based on an interface tracking method that is now described for

the steady-state case. First, for a given velocity �eld, the colour function F is computed by
solving Equation (1) using the �nite element method on the reference mesh. Once the values
of F have been obtained, a new mesh can be generated. Figure 2 illustrates the four-step
approach in the case of the advection skew to the mesh problem (see Section 2.2.1). First,
the elements to be re�ned on the reference mesh of computational domain � (Figure 2(a))
are determined. They correspond here to those elements for which F is between preset values
F =0:5±�, where � is chosen by the user (Figure 2(b)). The targeted elements are next marked
with control points arbitrarily located at their centre (Figure 2(c)). The mesh is then adapted
around the control points (Figure 2(d)) and a new simulation is performed. These control
points are only used to estimate the position of the interface and guide the remeshing step.
They do not represent the accurate position of the front. The procedure can be repeated until

Figure 2. Mesh re�nement technique: (a) reference mesh; (b) selection of elements to be re�ned;
(c) creation of a control point for each element to be re�ned; and (d) generation of new mesh.
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an accurate solution is obtained. The algorithm is as follows:

1. Start the problem with a reference mesh
2. For i=1 to n passes, do
2.1. Flow calculation
2.2. Determination of the interface: F =0:5±�
2.3. Creation of control points
2.4. Adaptive mesh re�nement based on reference mesh and control points

At present, in our implementation, the number of mesh re�nements or iterations is set by the
user, but a criterion based on the variation of F between two successive iterations could be
used for more �exibility, as for example:

‖Fn+1 − Fn‖∞;� = max
i

‖Fn+1
i − Fn

i ‖¡tol (3)

where i stands for the node number and tol for some tolerance value. In this study, the
maximum number of iterations was arbitrarily �xed to 7, unless stated otherwise.
When dealing with unsteady–state problems, initial conditions are needed to start the sim-

ulation. One time step is performed with the �nite element solver and the control points are
set according to the position of the �uid interface. At this stage, the remeshing technique
described above is applied. Control points are added in any element for which F =0:5±� in
order to estimate the position of the interface, and the remeshing procedure is performed for
the elements lying within a preset distance from these control points. The reference mesh
needs to be adapted at each time step. Once the mesh has been locally adapted by means
of one or more iterations, the solution is projected onto this new mesh and the next time
iteration can be computed. The algorithm for the unsteady–state case is as follows:

1. Start the problem with initial conditions: t=0; F(0)=F0
2. Do
2.1. Flow calculation
2.2. Determination of the interface: F =0:5±�
2.3. Creation of control points
2.4. For j=1 to n passes, do

2.4.1. Adaptive mesh re�nement based on reference mesh and control points
2.5. Projection of the solution onto the new mesh
2.6. t= t +�t

2.2. Benchmark problems

The mesh re�nement strategy discussed above was tested on two benchmark problems widely
used in the literature: advection skew to the mesh [8] and the transport of a square in a
steady-state �ow �eld [13]. In the �rst problem, the domain is a unit square and the reference
mesh comprises 2× 10× 10 regular triangular elements. The velocity �eld u is unidirectional
and constant. Its magnitude is set to 1 and its direction � is 15; 30; 45; 60◦ with respect to
the x-axis for the steady-state problem and 45◦ for the transient case. In the second problem,
a square shape, on which F is set to 1, is transported by the velocity �eld u=(

√
2
2 ;

√
2
2 ). For

this case, the reference mesh is minimal, with only 2× 1× 1 elements.
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For all problems, the solution of the advection equation (1) was obtained using the SUPG
method with P1 linear �nite elements. A very small di�usive term was added to the right-hand
side of (1), yielding the following hyperbolic problem:

@F
@t
+ u:gradF = k∇2F (4)

The value of k was set to 10−9, which corresponds to a high Peclet number problem.
To evaluate the accuracy of the computed �nite element solution Fh versus the exact solution

Fe, the following error terms, used in the literature [7], are introduced:

�Ei = |Fhi − Fei | (5)

E0 =
∑n

i=1(�Ei)2

n
(6)

E∞ = max
i=1;:::;n

(�Ei) (7)

Etot =
∑n

i=1 �Ei∑n
i=1 F0ei

(8)

where i stands for the node number (i=1; : : : ; n) and F0ei the exact solution on node i at t=0.
All the computations were performed on an IBM P630 workstation.

2.2.1. Steady-state case. For the steady-state advection skew to the mesh problem, F is set to
1 along the y-axis and 0 along the x-axis. The minimum and maximum values of F obtained
on the reference mesh as well as on the re�ned meshes are given in Figures 3(a) and (b),
respectively.
The results show that both these values are within 3% from the expected values of 0 and 1,

and that the discrepancies decrease below 0.7% as successive mesh re�nements are applied.
Figures 4, 5 and 6 show the elevated surface of F obtained with the reference mesh and the
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Figure 3. Minimum (a) and maximum (b) values of the colour function F for the steady-state
advection skew to the mesh problem.
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Figure 4. Colour function F for the �=45◦ steady-state advection skew to the mesh problem: (a) with
the reference mesh; and (b) with the re�ned mesh after 7 iterations.

Figure 5. Colour function F for the �=30◦ steady-state advection skew to the mesh problem: (a) with
the reference mesh; and (b) with the re�ned mesh after 7 iterations.
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Figure 6. Colour function F for the �=15◦ steady-state advection skew to the mesh problem: (a) with
the reference mesh; and (b) with the re�ned mesh after 7 iterations.
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Figure 7. Steady-state advection skew to the mesh problem with �=45◦. Colour function F
along a line normal to the �ow, as indicated by the arrow.

re�ned mesh after 7 re�nement iterations, for the 45◦, 30◦ and 15◦ cases, respectively. On
the reference mesh, di�usion and oscillations can be readily noticed. For these three cases,
when the mesh re�nement technique is applied, di�usion becomes limited to a very small
area, as expected, and oscillations nearly vanish. This is illustrated in Figure 7 for the 45◦

case. Figures 8(a), (b) and (c) show the evolution of the surface area with the number of
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Figure 8. Evolution of the colour function surface area for the: (a) �=45◦; (b) �=30◦; and (c) �=15◦,
steady-state advection skew to the mesh problem.

re�nement iterations for �=45◦, 30◦ and 15◦, respectively. This surface is the blue area
in Figures 4–6 (between the F =0:5 contour and the x-axis). As the mesh is re�ned, this
area tends towards the analytical solution Atheo = 1=2L2 tan �, where L is the length of the
domain in the x-direction (L=1m in that case) and � the angle as already de�ned. For the
45◦ case, the nodes of the elements at the interface are aligned with respect to the velocity
�eld, and literally split the domain into two parts because of the use of a structured mesh.
The situation is di�erent for the other two cases. This explains why the numerical solution is
better in Figure 8(a) for the 45◦ case than in Figures 8(b) and (c) for the 30◦ and 15◦ cases,
respectively.

2.2.2. Transient case. A second-order implicit Crank–Nicholson time scheme with a time
step of 5 × 10−4 s was used for the transport of a square in a steady-state �ow �eld. An
enlarged view of the position of the square at t=0 and 0:75 s is shown as F contours in
Figure 9. The shape of the square remains constant except at the corners, which are slightly
rounded because of the small numerical di�usion.
The mesh evolution from t=0 to 0:75 s and the F contours are presented in Figure 10.

As many as 10 re�nement iterations were used in each case. The results obtained show
the accuracy that can be expected with the proposed mesh re�nement procedure. It also
provides evidence for its robustness since the reference mesh was comprised of only two �nite
elements.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1305–1327
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Figure 9. Transport of a square in a steady-state �ow �eld: F contours at: (a) t=0 s; and (b) t=0:75 s.

Figure 10. Transport of a square in a steady-state �ow �eld: mesh evolution and F contours at:
(a) t=0 s; (b) t=0:15 s; (c) t=0:45 s; and (d) t=0:75 s.
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FINITE ELEMENT STRATEGY FOR SOLUTION OF INTERFACE TRACKING PROBLEMS 1315

In summary, the mesh re�nement procedure is capable of capturing a sharp front but some
non-physical wiggles still remain in the steep front region. To make the overall interface
tracking strategy more accurate, a procedure is required to �lter out the residual oscillations
that may remain in the solution. The construction of such a �lter is next described.

3. FILTERING TECHNIQUE

3.1. Methodology

Let us �rst introduce some notations. F̃ represents the oscillatory solution of the colour
function, the values of which are obtained after solving Equation (1). �F is the oscillation-free
solution of the colour function obtained after application of the �lter.
We start from the mathematical function

tanh(F̃)=
exp(F̃)− exp(−F̃)
exp(F̃) + exp(−F̃)

(9)

which ranges from −1 to 1 for F̃ ∈]−∞;+∞[, as shown in Figure 11(a). Because we want �F
to range strictly between 0 and 1, a translation is applied:

�F =
tanh(F̃) + 1

2
(10)

or, using (9),

�F =
1

1 + exp(−2F̃) (11)

This function is shown in Figure 11(b).
In practice, as F̃ is the solution of Equation (1) obtained with the SUPG �nite element

method described above, its values lie in the vicinity of 0 and 1, more precisely between
[−�1; 1 + �2], where �1 and �2 are generally small positive numbers. Consequently, two
additional transformations are applied to (11) in order to take into account explicitly the
domain of F̃ . A scaling factor � is �rst introduced such that F̃ is replaced by �F̃ , where
� � 1 and the values of F̃ are mapped from ] − ∞;+∞[ to [−1;+1]. More details on the
value of � will be given in Section 3.2. Equation (11) then becomes:

�F =
1

1 + exp(−2�F̃) (12)

A second transformation is required to map the values of F̃ from [−1;+1] to [0;+1], which
gives

�F =
1

1 + exp(−2�(2F̃ − 1)) = g(F̃) (13)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1305–1327
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Figure 11. Di�erent steps in the construction of the �lter: �F with respect to F̃ : (a) from Equation (9);
(b) from Equation (11); and (c) from Equation (13).

This function is the proposed �lter, the graph of which is presented in Figure 11(c). Finally,
we have to ensure that �F satis�es Equation (1):

@ �F
@t
+ u:grad �F =0 (14)

Upon using

@ �F
@t
= g′(F̃)

@F̃
@t

(15)

and

@ �F
@xi
= g′(F̃)

@F̃
@xi

(16)

where

g′(F̃)=
@ �F
@F̃

(17)
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it follows that

@ �F
@t
+ u:grad �F = g′(F̃)

(
@F̃
@t
+ u:grad F̃

)
(18)

and, since

@F̃
@t
+ u:grad F̃ =0 (19)

we get

@ �F
@t
+ u:grad �F =0 (20)

As already said, the SUPG method [8] was used in this work to solve Equation (19).
Alternatively, Equation (19) could be solved by any e�cient hyperbolic solver. One takes as
initial and boundary conditions for F̃ those for �F , as they remain the same. �F can be recovered
a posteriori by applying transformation (13). For steady-state problems, the �ltering technique
is applied after the solution has been obtained for F̃ to generate the �ltered values of �F . For
transient problems, the values of �F can be updated at any chosen time steps.

3.2. Validation

3.2.1. Steady-state advection skew to the mesh problem. The domain in this case is the
unit square meshed with 2 × 64 × 64 regular triangular elements. The velocity �eld u is
unidirectional and constant. Its magnitude is set to 1 and its direction � is 30◦ with respect
to the x-axis. The value of F is set to 0 along the x-axis and 1 along the y-axis.
The choice �=5 in Equation (13) gives good results in practice, because it keeps the numer-

ical di�usion small. Indeed, such a choice yields �F =[ �Fmin; �Fmax]= ]�; 1−�[ with �=4:5×10−5.
A smaller value of � could be obtained by choosing a larger value of � (Table I). Higher
values of � reduce the amount of di�usion but the interface then tends to become stair-like,
as shown in Figure 12. On the other hand a too small value of � results in a non-minimal
amount of numerical di�usion for a given mesh. A trade-o� value is required for optimal
results.
Figure 13 displays the elevated surface of the colour function obtained without (Figure 13(a))

and with (Figure 13(b)) the �ltering procedure. The results clearly show that the �ltering
procedure can reduce the numerical oscillations very e�ciently. A more quantitative assess-
ment is given in Table II, which summarizes the errors obtained with and without the �ltering
procedure. As expected, the errors E0 and Etot decrease with �ltering. Moreover, one can see
that the maximum value of the error E∞ is larger when �ltering is used, a fact that can

Table I. Values of �Fmin and �Fmax for di�erent values of �.

� 1 2 3 4 5 10 20

�Fmin 0.12 0.02 0.003 3:0× 10−4 4:5× 10−5 2:1× 10−9 4:2× 10−18
�Fmax 0.88 0.98 0.997 ∼ 1 ∼ 1 ∼ 1 ∼ 1

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1305–1327
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Figure 12. Steady-state advection skew to the mesh problem: �F =0:5 contour line when �=10.

Figure 13. Steady-state advection skew to the mesh problem: elevated surface of F without
(a) and with (b) the �ltering procedure.

Table II. Errors obtained with and without the �ltering procedure in the
case of the steady-state advection skew to the mesh problem.

E0 E∞ Etot

Without �ltering 0:13× 10−2 0.52 0:36× 10−1

Filtering 0:63× 10−3 0.59 0:80× 10−2

be surprising a priori. This behaviour is local and results from the more important smearing
e�ect of the colour function at the interface in the non-�ltered case.
Figure 14 illustrates a contour plot of the error �eld �Ei (from Equation (5)) obtained with

and without �ltering. For both cases, one can readily see that the error di�uses on both sides
of the interface due to the presence of oscillations. However, with the �ltering technique, the
error decreases much more rapidly as we move away from the interface, which explains the
behaviour of E0 and Etot in Table II.

3.2.2. Zalesak’s problem. The Zalesak’s 2D problem [21] is commonly used to test the
quality of advection solution methods. This problem consists of a solid body rotating in a
4×4 square domain. The solid body is a cut-out cylinder of height 1 (the value of the colour
function) advected by a counterclockwise rotating �ow �eld (Figure 15). The velocity �eld

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1305–1327
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Figure 14. Steady-state advection skew to the mesh problem: contour plot of �Ei:
(a) without; and (b) with the �ltering procedure.

Figure 15. Zalesak’s problem: transport of a cut-out cylinder in a rotating �ow.

is given by u=(−y=2; x=2). The centre of the cylinder is initially located at (0.0, 0.75). The
computational grid contains 2× 200× 200 regular triangular elements, so that the mesh size
is �h=0:02. The diameter of the cylinder is 50�h, the slot width is 6�h and the slot length
is 30�h, as shown in Figure 15.
Two simulations were performed: one with the SUPG method alone and the other with

the SUPG method coupled with the �ltering technique. In each case, a second-order implicit
Crank–Nicholson time scheme was used. The time step �t was set to 5×10−3 s and 2524 time
iterations were needed for the cut-out cylinder to perform one complete revolution around the
centre of the domain (0.0, 0.0).
Figures 15, 16(a) and (b) display, respectively, the elevated contours of F at t=0 s and

after one complete revolution, without and with the �ltering procedure. As can be seen in
Figure 16(a), the SUPG method su�ers from di�usion and does not eliminate all the oscil-
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Figure 16. Zalesak’s problem: elevated surface of F after one revolution:
(a) without; and (b) with the �ltering procedure.

Figure 17. Zalesak’s problem: contour plot of �Ei after one revolution: (a) without �ltering;
and (b) with the �ltering procedure.

lations. Combined with the �ltering technique, it yields a sharp interface (Figure 16(b)) and
removes the spurious oscillations in a satisfactory manner.
Figures 17(a) and (b) show a contour plot �Ei for the non-�ltered and the �ltered cases,

respectively. After one complete revolution, the largest errors are located at the corners of
the cut-out cylinder as these initially sharp corners have rounded out. Overall, the error is
actually smaller when SUPG method is combined with the �ltering technique, as shown by
the values of E0 and Etot in Table III.
A comparison of the results obtained with the volume-tracking methods (SLIC, Hirt and

Nichols, FCT–VOF and Youngs’ methods) of Reference [7] and the �ltering strategy of this
work is presented in Figure 18 and Table IV. One can conclude from these results that the
present �ltering strategy outperforms the standard SUPG method as well as the SLIC and
Hirt–Nichols VOF methods, but is less accurate than the FCT and Youngs’ VOF methods.
As we shall see next, one way to reduce the slightly more important di�usion obtained with
the �ltering technique in comparison with, for example, Youngs’ method would be to combine
it with the mesh re�nement procedure presented in Section 2.

4. COMBINATION OF THE MESH REFINEMENT AND FILTERING TECHNIQUES

To assess the e�ciency of the strategy that consists of combining the mesh re�nement and
�ltering techniques discussed above, two benchmark problems are considered.
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Table III. Errors obtained with and without the �ltering procedure
in the case of Zalesak’s problem.

E0 E∞ Etot

Without �ltering 0:28× 10−3 0.74 0.25
Filtering 0:18× 10−3 0.99 0:69× 10−1

Figure 18. Comparison of advection methods for the Zalesak’s problem, after one revolution
(from Reference [7] and present work).

Table IV. Comparison of advection methods for Zalesak’s problem,
after one revolution (from Reference [7] and present work).

Method SLIC Hirt–Nichols FCT–VOF
Etot 8:38× 10−2 9:62× 10−2 3:29× 10−2

Method Youngs SUPG Filter
Etot 1:09× 10−2 2:53× 10−1 6:99× 10−2

4.1. Zalesak’s problem

The test in Section 3.2.2 is taken up again for the same conditions. Seven iterations of the
mesh re�nement technique were performed, leading to �h varying from 0.003 to 0.4. The
elevated surfaces and F =0:5 contour line at t=0 s are shown in Figures 19(a) and (b),
respectively, whereas Figures 20(a) and (b) display the elevated surfaces of F after one
complete revolution in the case where the mesh re�nement technique was used without and
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Figure 19. Zalesak’s problem: (a) elevated surface of F ; and (b) F =0:5 contour line at t=0 s.

Figure 20. Zalesak’s problem: elevated surface of F after one revolution obtained with the adaptive
mesh re�nement technique: (a) without; and (b) with the �ltering procedure; (c) F =0:025, F =0:5 and

F =0:975 contour lines after one revolution.
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Figure 21. Zalesak’s problem: surface area of the cut-out cylinder during its advection.

with the �ltering technique, respectively. One can readily see in Figure 20(b) that the solution
is really close to the initial solution (Figure 19(a)). The F =0:025, 0.5 and 0.975 contour
lines of Figure 20(c) can also be compared to those of Figure 18. The comparison is a
clear indication of the e�ciency of the method. It is also interesting to compare Figure 20(c)
with the F =0:5 contour line at t=0 s of Figure 19(b); the two results are nearly the same,
which shows that the smearing e�ects after one revolution are very small and barely visible.
In fact, as in the case of the advection of the square presented in Section 2.2.2, the shape
of the cut-out cylinder remains unchanged except at the corners, which are slightly rounded
because of the small numerical di�usion. Finally, the evolution with time of the area of the
cut-out cylinder is displayed in Figure 21. One may notice that, with and without �ltering,
the variations are very small (of about 0.1%) after one revolution.

4.2. Shear �ow problem

The shear �ow problem, a test widely used in the literature [7, 14, 26] was also considered.
This test consists of the deformation of a disc in a shear �ow. More precisely, a disc inside
of which F =1 and outside of which F =0 is initially centred at x=1:57 and y=0:8 in a
square domain of length �. This disc is then deformed by a single vortex described by the
stream function

 = sin2(x) sin2(y) (21)

and the velocity �eld

u = +
@ 
@y
= + sin2(x) sin(2y)

v = −@ 
@x
= − sin(2x) sin2(y)

(22)

Figure 22(I) shows the F =0:5 contour lines corresponding to the analytical solution at t
values of 0; 1:5; 3; 4:5 and 6 s. Figure 22(II) shows the contour lines obtained with the mesh
re�nement technique alone, and Figure 22(III) those obtained when the mesh re�nement
technique is combined with the �ltering technique. One may readily observe that there is
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Figure 22. Shear �ow problem: F =0:5 contour lines corresponding to (I) the analytical solution; (II)
the numerical solution obtained without �ltering and (III) the numerical solution obtained with �ltering

at: (a) t=0 s; (b) t=1:5 s; (c) t=3 s; (d) t=4:5 s; and (e) t=6 s.
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Figure 23. Colour function F along a line at x=0 and at t=6 s (regular view (a) and zoom (b)).

a close agreement between the analytical and the computed solutions obtained with both
methods. The �ltered solution is more accurate than the un�ltered. It reduces signi�cantly the
oscillations and yields values of the colour function F that are strictly between 0 and 1. This
fact is evidenced in Figure 23, which represents a section of the colour function along a line
at x=0 for the non-�ltered and the �ltered cases.

5. CONCLUSION

In this work, an e�cient �nite element strategy for the solution of interface tracking problems
was presented. First, a mesh re�nement technique based on one single reference mesh was
proposed and was shown to signi�cantly improve the accuracy of the SUPG method. A
�ltering procedure was then introduced to remove residual oscillations. The �lter was derived
in such a way that the colour function strictly lies between 0 and 1, an important feature when
this colour function is used to evaluate physical properties such as density or viscosity. This
�ltering method does not degrade the solution; for instance, the area of the cut-out cylinder
was observed to remain constant with and without �ltering. The �lter that was developed is
low-cost and easy to implement. Finally, the overall strategy proved robust and accurate on
a few benchmark problems, which shows its potential for two-phase �ow problems.
In future work, the proposed strategy will be extended to the case where the velocity is given

by the solution of the Navier–Stokes equations, for instance to simulate the hydrodynamics
in the application nip of high speed roll coaters in paper coating applications. Results will be
compared to experimental data [1] and also to numerical data computed with a free surface
method [27]. More work is also required concerning the control of the regularity of the
meshes that are generated by the re�nement technique. In particular, special care is needed
if the mesh re�nement technique is to be applied recursively because it can then lead to
the deterioration of the element aspect ratio. To alleviate this di�culty, a non-standard mesh
re�nement technique developed for the Navier–Stokes equations [18] will be extended to the
solution of interface tracking problems. Future work will also deal with the in�uence of time
integration schemes such as those proposed by Gresho and Sani [28], on numerical di�usion.
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